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Last Class We Covered 

• Using for loops 

– Syntax 

– Using it to iterate over a list 

– Using it for “counting” the number of actions 

• The range() function 

– Syntax 

– Three forms: one, two, or three numbers 
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Any Questions from Last Time? 
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Today’s Objectives 

• To learn about and use a while loop 

– To understand the syntax of a while loop 

– To use a while loop for interactive loops 

• To learn two different ways to mutate a list 

–append() and remove() 

• To apply our knowledge to create nested loops 

• To touch (briefly) on two-dimensional lists 
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Review: Looping and Range 
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Review of range() Function 

for i in range(5): 

    print(i) 

 

0 

1 

2 

3 

4 
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What is the 
output of this 

code? 

Range generates a 
list of numbers up to 
but not including the 

number 
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Review of range() Function 

for i in range(-3, -13, -3): 

    print(i) 

 

-3 

-6 

-9 

-12 
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What is the 
output of this 

code? 

With three numbers, 
we can change the 

step to a negative to 
let us count down 
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The “Average” for Loop 

• Use a for loop to find the average from a list 
of numbers 

 

nums  = [98, 75, 89, 100, 45, 82] 

total = 0   # we have to initialize total to zero 

 

for n in nums: 

    total = total + n  # so that we can use it here 

avg = total / len(nums) 

print("Your average in the class is: ", avg) 
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Getting Flexible Input 
• Can we fill the list with numbers from the user? 

– What if we only want positive numbers? 

– And we want to re-prompt the user if  
they enter a negative number? 

• And keep re-prompting until they enter a positive 
 

• We can’t do this with a for loop – why? 

– For loops only run a pre-set number of times 

– We don’t know how many times to re-prompt 
9 



www.umbc.edu 

Looping 

• Python has two kinds of loops, and they are 
used for two different purposes 

 

• The for loop: 

– Good for iterating over a list 

– Good for counted iterations 

• The while loop 

– Good for almost everything else 
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what we’re 
covering today 
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while Loops: Syntax and Uses 
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The while Loop 

• The while loop is used when we’re not 

– Iterating over a list 

–Doing a “counted” loop 
 

• Works the way its name implies: 

While a conditional evaluates to True: 

Do a thing (repeatedly, if necessary) 
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Parts of a while Loop 

• Here’s some example code… let’s break it down 
 

 

date = 0 

 

while date < 1 or date > 31: 

    date = int(input("Enter the day: ")) 

 

print("Today is February", date) 
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Parts of a while Loop 

• Here’s some example code… let’s break it down 
 

 

date = 0 

 

while date < 1 or date > 31: 

    date = int(input("Enter the day: ")) 

 

print("Today is February", date) 
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initialize the variable the while 
loop will use for its decision 

the loop’s Boolean condition 
(loop runs until this is False) 

the body of the loop 
(must change the value 

of the loop variable) 
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How a while Loop Works 

• The while loop requires a Boolean condition  

– That evaluates to either True or False 
 

• If the condition is True: 

– Body of while loop is executed 

• If the condition is False: 

– Body of while loop is skipped 
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Example while Loop 

• We can use a while loop to do a “counting” 
loop, just like we did using a for loop 

 
num  = 1             # we have to initialize num 

 

while num <= 20:     # so that we can use it here 

    print(num) 

    num = num + 1    # don't forget to update 

                     # the loop variable 
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Example while Loop 

17 

Start 

End 

Display 
num 

FALSE 

num = 1 

num <= 20 TRUE num = num + 1 
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Differences Between the Loops 

• Though they are both loops, for loops and 
while loops behave very differently 

 

• What does the loop do? 

– for loop: 

• Iterate over a list 

– while loop: 

• Evaluate a conditional 
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Even when we 
use range() 

What?! 

Remember, 
range() creates a 
list of numbers! 
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Differences Between the Loops 

• What is the syntax of the loop? 

– for loop: 

•  for listVariable in listName: 

• Must contain list name and a list variable 

– while loop: 

•  while CONDITIONAL == True: 

• Must use a conditional that contains a  
variable that changes as the loop is run 
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Differences Between the Loops 

• How is the loop variable updated? 

– for loop: 

• The loop itself updates the loop variable 

• First time through, it is element at index 0, 
second time through, element at index 1, etc. 

– while loop: 

• Programmer must update the loop variable 

• Updating is not done automatically by Python 
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Infinite Loops and Other Problems 
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Infinite Loops 

• An infinite loop is a loop that will run forever 
 

• Can we have an infinite loop using for? 

– No!  The for loop goes through a set number of 
steps (iterating or counting) and will always end 

• Can we have an infinite loop using while? 

– Yes!  The while loop’s loop variable is 
controlled by us, and we can make mistakes 
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Infinite Loop Example #1 

• Why doesn’t this loop end?  What will fix it? 

 
 

age = 0 

while age < 18:   # can’t vote until 18 

    print("You can’t vote at age", age) 

 

print("Now you can vote! Yay!") 
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Infinite Loop Example #1 

• Why doesn’t this loop end?  What will fix it? 

 
 

age = 0 

while age < 18:   # can’t vote until 18 

    print("You can’t vote at age", age) 

 

print("Now you can vote! Yay!") 
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the loop variable (age) never 
changes, so the condition will 

never evaluate to False 
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Infinite Loop Example #2 

• Why doesn’t this loop end?  What will fix it? 

 
 

while True: 

    # ask user for name 

    name = input("What is your name? ") 

 

print("Hello", name + "!") 
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Infinite Loop Example #2 

• Why doesn’t this loop end?  What will fix it? 

 
 

while True: 

    # ask user for name 

    name = input("What is your name? ") 

 

print("Hello", name + "!") 
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True will never evaluate to 
False, so the loop will never exit 
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Infinite Loop Example #3 

• Why doesn’t this loop end?  What will fix it? 

 
cookiesLeft = 50 

 

while cookiesLeft > 0: 

    # eat a cookie 

    cookiesLeft = cookiesLeft + 1 

 

print("No more cookies!") 
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Infinite Loop Example #3 

• Why doesn’t this loop end?  What will fix it? 

 
cookiesLeft = 50 

 

while cookiesLeft > 0: 

    # eat a cookie 

    cookiesLeft = cookiesLeft + 1 

 

print("No more cookies!") 
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the loop body is INCREASING 
the number of cookies, so 

we’ll never reach zero! 
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Ending an Infinite Loop 

• If you run a program that contains an infinite 
loop, it may seem like you’ve lose control of 
the terminal! 

 

• To regain control, simply type CTRL+C to 
interrupt the infinite loop 
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Loop Body Isn’t Being Run 

• Unlike most for loops, a while loop’s 
body may be skipped over entirely 

– If the Boolean condition is initially False 
 

militaryTime = 1300 

 

while (militaryTime < 1200): 

    print("Good morning!") 

    militaryTime = militaryTime + 100 
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Updating and Changing Lists 
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Mutating Lists 

• Remember that lists are defined as  
“mutable sequences of arbitrary objects” 

– “Mutable” just means we can change them 

 

• So far, the only thing we’ve changed  
has been the content of the list 

–But we can also change a list’s size,  
by adding and removing elements 
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Two List Functions 

• There are two functions we’ll cover today  
that can add and remove things to our lists 

– There are more, but we’ll cover them later 

 
append() 

remove() 
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List Function: append() 

• The append() function lets us add items to 
the end of a list, increasing its size 
LISTNAME.append(ITEM_TO_APPEND) 

 

• Useful for creating a list from flexible input 

– Allows the list to expand as the user needs 

– No longer need to initialize lists to [None]*NUM 

• Can instead start with an empty list [] 
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Example of append() 

• We can use append() to create a list of 
numbers (continuing until the user enters 0) 

 

values = []   # initialize the list to be empty 

userVal = 1   # give loop variable an initial value 

 

while userVal != 0: 

    userVal = int(input("Enter a number, 0 to stop: ")) 

    if userVal != 0:       # only append if it's valid 

        values.append(userVal) # add value to the list 
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Example of append() 

• We can use append() to create a list of 
numbers (continuing until the user enters 0) 
 

while userVal != 0: 

    userVal = int(input("Enter a number, 0 to stop: ")) 

    if userVal != 0:       # only append if it's valid 

        values.append(userVal) # add value to the list 
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values =  17 

0 

22 

1 

5 

2 

-6 

3 

13 

4 
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List Function: remove() 

• The remove() function lets us remove an 
item from the list – specifically, it finds and 
removes the first instance of a given value 
LISTNAME.remove(VALUE_TO_REMOVE) 

 

• Useful for deleting things we don’t need 

– For example, removing students who have  
dropped the class from the class roster 

– Keeps the list from having “empty” elements 
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Example of remove() 

• We can use remove() to remove students 
who have dropped the class from the roster 
 

roster = ["Adam", "Alice", "Andy", "Ariel"] 
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roster =  Adam 

0 

Alice 

1 

Andy 

2 

Ariel 

3 
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Example of remove() 

• We can use remove() to remove students 
who have dropped the class from the roster 
 

roster = ["Adam", "Alice", "Andy", "Ariel"] 

roster.remove("Adam")   # Adam has dropped the class 
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roster =  Adam 

0 

Alice 

1 

Andy 

2 

Ariel 

3 
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Example of remove() 

• We can use remove() to remove students 
who have dropped the class from the roster 
 

roster = ["Adam", "Alice", "Andy", "Ariel"] 

roster.remove("Adam")   # Adam has dropped the class 

roster.remove("Bob")    # Bob is not in the roster 
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roster =  Alice 

0 

Andy 

1 

Ariel 

2 
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Interactive while Loops 
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When to Use while Loops 

• while loops are very helpful when you: 

–Want to get input from the user that  
meets certain specific conditions 

• Positive number 

• A non-empty string 

–Want to keep getting input until some “end” 

• User inputs a value that means they’re finished 

• Reached the end of some input (a file, etc.) 
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Example while Loop 

• We can use a while loop to get correct input 
from the user by re-prompting them 

 

num  = 0          # we have to initialize num 

 

while num <= 0:   # so that we can use it here 

    num = int(input("Enter a positive number: ")) 

 

# while loop exits because num is positive 

print("Thank you.  The number you chose is:", num) 
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Nested Loops 
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Nesting 

• You have already used nested statements 

– In HW3, you used nested if/elif/else 
statements to help you guess a character 

 

• We can also nest loops! 

– First loop is called the outer loop 

– Second loop is called the inner loop 
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Nested Loop Example 

• What does this code do? 
 

scores = [] 

for i in range(10): 

    num = 0 

 

    while num <= 0: 

        num = int(input("Enter a positive #: ")) 

    scores.append(num) 

 

print(scores) 
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Nested Loop Example 

• What does this code do? 
 

scores = [] 

for i in range(10): 

    num = 0 

 

    while num <= 0: 

        num = int(input("Enter a positive #: ")) 

    scores.append(num) 

 

print(scores) 
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creates an empty list 

will run 10 times 

will keep running 
while num is negative 

once the while loop exits, num must 
be positive, so add it to the scores list 

the code range(10) 
generates the list 

[0, 1, ... , 8, 9] 
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Two-Dimensional Lists 
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Two-Dimensional Lists 

• We’ve looked at lists as being one-dimensional 

–But lists can also be two- (or three- or  
four- or five-, etc.) dimensional! 

 

• Lists can hold any type (int, string, float, etc.) 

– This means they can also hold another list 
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Two-Dimensional Lists: A Grid 

• May help to think of 2D lists as a grid 
 

twoD = [ [1,2,3], [4,5,6], [7,8,9] ] 
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1 2 3 

4 5 6 

7 8 9 
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Two-Dimensional Lists: A Grid 

• You access an element by the index of its row, 
then the column 

–Remember – indexing starts at 0! 
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0 1 2 

0 1 2 3 

1 4 5 6 

2 7 8 9 
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Two-Dimensional Lists: A Grid 

• You access an element by the index of its row, 
then the column 

–Remember – indexing starts at 0! 
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0 1 2 

0 1 2 3 

1 4 5 6 

2 7 8 9 

index: [0][2] 

index: [1][0] 

index: [2][1] index: [2][2] 
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Lists of Strings 

• Remember, a string is a list of characters 

• So what is a list of strings? 

–A two-dimensional list! 
 

• We have the index of the string (the row) 

• And the index of the character (the column) 
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Lists of Strings 

• Lists in Python don’t have to be rectangular 

– They can also be jagged (rows different lengths) 
 

• Anything we could do  
with a one-dimensional 
list, we can do with a  
two-dimensional list 

– Slicing, index, appending 
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0 1 2 3 4 

0 A l i c e 

1 B o b 

2 E v a n 

names 
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NOTE: Strings vs Lists of Characters 

• Strings and lists of characters are not exactly the 
same in Python; different operations are allowed 

 

• Strings – can use upper() and lower() 
names = ['Alice', 'Bob', 'Evan'] 

• List of characters – can use append() 
names = [list("Alice"), list("Bob"), list("Evan")] 

[['A', 'l', 'i', 'c', 'e'], ['B', 'o', 'b'],  

 ['E', 'v', 'a', 'n']] 
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Practice: Two-Dimensional Lists 

1. Using a loop, print all five numbers from the 
first row of ex_nums 

2. Replace the 4 with  
the word “four” 

3. Add a 3 to the end of 
the last row 

4. Delete the 5 from 
the list 
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0 1 2 3 4 

0 1 2 3 4 5 

1 6 7 8 

2 9 0 1 2 

ex_nums 
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Answers: Two-Dimensional Lists 
1. for num in ex_nums[0]: 

    print(num) 

 

2. ex_nums[0][3] = "four" 

 

3. ex_nums[2].append(3) 

 

4. ex_nums[0].remove(5) 
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0 1 2 3 4 

0 1 2 3 4 5 

1 6 7 8 

2 9 0 1 2 

ex_nums 
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Practice: List of Lists of Characters 

1. Add a “b” and a “y” to the end of “Bob” 

2. Print out the second letter in “Evan” 

3. Change “Alice” to “Alyce” 
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0 1 2 3 4 

0 A l i c e 

1 B o b 

2 E v a n 

names[1].append('b') 

names[1].append('y') 

 

print(names[2][1]) 

 

names[0][2] = 'y' 

names 
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Announcements 

• Lab 3 is being held this week! 

– Make sure you attend your correct section 
  

• Homework 4 is out 

– Due by Monday (February 29th) at 8:59:59 PM 
 

• Homeworks and Pre-Labs are on Blackboard 

– Homework 1 grades have been released 
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Practice Problems 

• Write a program that allows the user to try 
and guess the password. It should allow them 
to guess the password up to three times 
before it doesn’t let them guess anymore. 

• Write a program that allows the user to enter 
numbers until they enter a -1 to stop. 

– After they enter a -1, it should output the average, 
the minimum, and the maximum of the numbers.  
Make sure not to include the -1 when calculating! 
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