
www.umbc.edu

CMSC201
 Computer Science I for Majors

Lecture 09 – While Loops

Prof. Katherine Gibson

Prof. Jeremy Dixon

www.umbc.edu

Last Class We Covered

• Using for loops

– Syntax

– Using it to iterate over a list

– Using it for “counting” the number of actions

• The range() function

– Syntax

– Three forms: one, two, or three numbers

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To learn about and use a while loop

– To understand the syntax of a while loop

– To use a while loop for interactive loops

• To learn two different ways to mutate a list

–append() and remove()

• To apply our knowledge to create nested loops

• To touch (briefly) on two-dimensional lists

4

www.umbc.edu

Review: Looping and Range

www.umbc.edu

Review of range() Function

for i in range(5):

 print(i)

0

1

2

3

4

6

What is the
output of this

code?

Range generates a
list of numbers up to
but not including the

number

www.umbc.edu

Review of range() Function

for i in range(-3, -13, -3):

 print(i)

-3

-6

-9

-12

 7

What is the
output of this

code?

With three numbers,
we can change the

step to a negative to
let us count down

www.umbc.edu

The “Average” for Loop

• Use a for loop to find the average from a list
of numbers

nums = [98, 75, 89, 100, 45, 82]

total = 0 # we have to initialize total to zero

for n in nums:

 total = total + n # so that we can use it here

avg = total / len(nums)

print("Your average in the class is: ", avg)

8

www.umbc.edu

Getting Flexible Input
• Can we fill the list with numbers from the user?

– What if we only want positive numbers?

– And we want to re-prompt the user if
they enter a negative number?

• And keep re-prompting until they enter a positive

• We can’t do this with a for loop – why?

– For loops only run a pre-set number of times

– We don’t know how many times to re-prompt
9

www.umbc.edu

Looping

• Python has two kinds of loops, and they are
used for two different purposes

• The for loop:

– Good for iterating over a list

– Good for counted iterations

• The while loop

– Good for almost everything else

 10

what we’re
covering today

www.umbc.edu

while Loops: Syntax and Uses

www.umbc.edu

The while Loop

• The while loop is used when we’re not

– Iterating over a list

–Doing a “counted” loop

• Works the way its name implies:

While a conditional evaluates to True:

Do a thing (repeatedly, if necessary)

12

www.umbc.edu

Parts of a while Loop

• Here’s some example code… let’s break it down

date = 0

while date < 1 or date > 31:

 date = int(input("Enter the day: "))

print("Today is February", date)

13

www.umbc.edu

Parts of a while Loop

• Here’s some example code… let’s break it down

date = 0

while date < 1 or date > 31:

 date = int(input("Enter the day: "))

print("Today is February", date)

14

initialize the variable the while
loop will use for its decision

the loop’s Boolean condition
(loop runs until this is False)

the body of the loop
(must change the value

of the loop variable)

www.umbc.edu

How a while Loop Works

• The while loop requires a Boolean condition

– That evaluates to either True or False

• If the condition is True:

– Body of while loop is executed

• If the condition is False:

– Body of while loop is skipped

15

www.umbc.edu

Example while Loop

• We can use a while loop to do a “counting”
loop, just like we did using a for loop

num = 1 # we have to initialize num

while num <= 20: # so that we can use it here

 print(num)

 num = num + 1 # don't forget to update

 # the loop variable

16

www.umbc.edu

Example while Loop

17

Start

End

Display
num

FALSE

num = 1

num <= 20 TRUE num = num + 1

www.umbc.edu

Differences Between the Loops

• Though they are both loops, for loops and
while loops behave very differently

• What does the loop do?

– for loop:

• Iterate over a list

– while loop:

• Evaluate a conditional

 18

Even when we
use range()

What?!

Remember,
range() creates a
list of numbers!

www.umbc.edu

Differences Between the Loops

• What is the syntax of the loop?

– for loop:

• for listVariable in listName:

• Must contain list name and a list variable

– while loop:

• while CONDITIONAL == True:

• Must use a conditional that contains a
variable that changes as the loop is run

19

www.umbc.edu

Differences Between the Loops

• How is the loop variable updated?

– for loop:

• The loop itself updates the loop variable

• First time through, it is element at index 0,
second time through, element at index 1, etc.

– while loop:

• Programmer must update the loop variable

• Updating is not done automatically by Python

20

www.umbc.edu

Infinite Loops and Other Problems

www.umbc.edu

Infinite Loops

• An infinite loop is a loop that will run forever

• Can we have an infinite loop using for?

– No! The for loop goes through a set number of
steps (iterating or counting) and will always end

• Can we have an infinite loop using while?

– Yes! The while loop’s loop variable is
controlled by us, and we can make mistakes

22

www.umbc.edu

Infinite Loop Example #1

• Why doesn’t this loop end? What will fix it?

age = 0

while age < 18: # can’t vote until 18

 print("You can’t vote at age", age)

print("Now you can vote! Yay!")

 23

www.umbc.edu

Infinite Loop Example #1

• Why doesn’t this loop end? What will fix it?

age = 0

while age < 18: # can’t vote until 18

 print("You can’t vote at age", age)

print("Now you can vote! Yay!")

 24

the loop variable (age) never
changes, so the condition will

never evaluate to False

www.umbc.edu

Infinite Loop Example #2

• Why doesn’t this loop end? What will fix it?

while True:

 # ask user for name

 name = input("What is your name? ")

print("Hello", name + "!")

 25

www.umbc.edu

Infinite Loop Example #2

• Why doesn’t this loop end? What will fix it?

while True:

 # ask user for name

 name = input("What is your name? ")

print("Hello", name + "!")

 26

True will never evaluate to
False, so the loop will never exit

www.umbc.edu

Infinite Loop Example #3

• Why doesn’t this loop end? What will fix it?

cookiesLeft = 50

while cookiesLeft > 0:

 # eat a cookie

 cookiesLeft = cookiesLeft + 1

print("No more cookies!")

27

www.umbc.edu

Infinite Loop Example #3

• Why doesn’t this loop end? What will fix it?

cookiesLeft = 50

while cookiesLeft > 0:

 # eat a cookie

 cookiesLeft = cookiesLeft + 1

print("No more cookies!")

28

the loop body is INCREASING
the number of cookies, so

we’ll never reach zero!

www.umbc.edu

Ending an Infinite Loop

• If you run a program that contains an infinite
loop, it may seem like you’ve lose control of
the terminal!

• To regain control, simply type CTRL+C to
interrupt the infinite loop

29

www.umbc.edu

Loop Body Isn’t Being Run

• Unlike most for loops, a while loop’s
body may be skipped over entirely

– If the Boolean condition is initially False

militaryTime = 1300

while (militaryTime < 1200):

 print("Good morning!")

 militaryTime = militaryTime + 100

30

www.umbc.edu

Updating and Changing Lists

www.umbc.edu

Mutating Lists

• Remember that lists are defined as
“mutable sequences of arbitrary objects”

– “Mutable” just means we can change them

• So far, the only thing we’ve changed
has been the content of the list

–But we can also change a list’s size,
by adding and removing elements

32

www.umbc.edu

Two List Functions

• There are two functions we’ll cover today
that can add and remove things to our lists

– There are more, but we’ll cover them later

append()

remove()

33

www.umbc.edu

List Function: append()

• The append() function lets us add items to
the end of a list, increasing its size
LISTNAME.append(ITEM_TO_APPEND)

• Useful for creating a list from flexible input

– Allows the list to expand as the user needs

– No longer need to initialize lists to [None]*NUM

• Can instead start with an empty list []

34

www.umbc.edu

Example of append()

• We can use append() to create a list of
numbers (continuing until the user enters 0)

values = [] # initialize the list to be empty

userVal = 1 # give loop variable an initial value

while userVal != 0:

 userVal = int(input("Enter a number, 0 to stop: "))

 if userVal != 0: # only append if it's valid

 values.append(userVal) # add value to the list

 35

www.umbc.edu

Example of append()

• We can use append() to create a list of
numbers (continuing until the user enters 0)

while userVal != 0:

 userVal = int(input("Enter a number, 0 to stop: "))

 if userVal != 0: # only append if it's valid

 values.append(userVal) # add value to the list

36

values = 17

0

22

1

5

2

-6

3

13

4

www.umbc.edu

List Function: remove()

• The remove() function lets us remove an
item from the list – specifically, it finds and
removes the first instance of a given value
LISTNAME.remove(VALUE_TO_REMOVE)

• Useful for deleting things we don’t need

– For example, removing students who have
dropped the class from the class roster

– Keeps the list from having “empty” elements

37

www.umbc.edu

Example of remove()

• We can use remove() to remove students
who have dropped the class from the roster

roster = ["Adam", "Alice", "Andy", "Ariel"]

38

roster = Adam

0

Alice

1

Andy

2

Ariel

3

www.umbc.edu

Example of remove()

• We can use remove() to remove students
who have dropped the class from the roster

roster = ["Adam", "Alice", "Andy", "Ariel"]

roster.remove("Adam") # Adam has dropped the class

39

roster = Adam

0

Alice

1

Andy

2

Ariel

3

www.umbc.edu

Example of remove()

• We can use remove() to remove students
who have dropped the class from the roster

roster = ["Adam", "Alice", "Andy", "Ariel"]

roster.remove("Adam") # Adam has dropped the class

roster.remove("Bob") # Bob is not in the roster

 40

roster = Alice

0

Andy

1

Ariel

2

www.umbc.edu

Interactive while Loops

www.umbc.edu

When to Use while Loops

• while loops are very helpful when you:

–Want to get input from the user that
meets certain specific conditions

• Positive number

• A non-empty string

–Want to keep getting input until some “end”

• User inputs a value that means they’re finished

• Reached the end of some input (a file, etc.)

42

www.umbc.edu

Example while Loop

• We can use a while loop to get correct input
from the user by re-prompting them

num = 0 # we have to initialize num

while num <= 0: # so that we can use it here

 num = int(input("Enter a positive number: "))

while loop exits because num is positive

print("Thank you. The number you chose is:", num)

43

www.umbc.edu

Nested Loops

www.umbc.edu

Nesting

• You have already used nested statements

– In HW3, you used nested if/elif/else
statements to help you guess a character

• We can also nest loops!

– First loop is called the outer loop

– Second loop is called the inner loop

45

www.umbc.edu

Nested Loop Example

• What does this code do?

scores = []

for i in range(10):

 num = 0

 while num <= 0:

 num = int(input("Enter a positive #: "))

 scores.append(num)

print(scores)

 46

www.umbc.edu

Nested Loop Example

• What does this code do?

scores = []

for i in range(10):

 num = 0

 while num <= 0:

 num = int(input("Enter a positive #: "))

 scores.append(num)

print(scores)

 47

creates an empty list

will run 10 times

will keep running
while num is negative

once the while loop exits, num must
be positive, so add it to the scores list

the code range(10)
generates the list

[0, 1, ... , 8, 9]

www.umbc.edu

Two-Dimensional Lists

www.umbc.edu

Two-Dimensional Lists

• We’ve looked at lists as being one-dimensional

–But lists can also be two- (or three- or
four- or five-, etc.) dimensional!

• Lists can hold any type (int, string, float, etc.)

– This means they can also hold another list

49

www.umbc.edu

Two-Dimensional Lists: A Grid

• May help to think of 2D lists as a grid

twoD = [[1,2,3], [4,5,6], [7,8,9]]

50

1 2 3

4 5 6

7 8 9

www.umbc.edu

Two-Dimensional Lists: A Grid

• You access an element by the index of its row,
then the column

–Remember – indexing starts at 0!

51

0 1 2

0 1 2 3

1 4 5 6

2 7 8 9

www.umbc.edu

Two-Dimensional Lists: A Grid

• You access an element by the index of its row,
then the column

–Remember – indexing starts at 0!

52

0 1 2

0 1 2 3

1 4 5 6

2 7 8 9

index: [0][2]

index: [1][0]

index: [2][1] index: [2][2]

www.umbc.edu

Lists of Strings

• Remember, a string is a list of characters

• So what is a list of strings?

–A two-dimensional list!

• We have the index of the string (the row)

• And the index of the character (the column)

53

www.umbc.edu

Lists of Strings

• Lists in Python don’t have to be rectangular

– They can also be jagged (rows different lengths)

• Anything we could do
with a one-dimensional
list, we can do with a
two-dimensional list

– Slicing, index, appending

54

0 1 2 3 4

0 A l i c e

1 B o b

2 E v a n

names

www.umbc.edu

NOTE: Strings vs Lists of Characters

• Strings and lists of characters are not exactly the
same in Python; different operations are allowed

• Strings – can use upper() and lower()
names = ['Alice', 'Bob', 'Evan']

• List of characters – can use append()
names = [list("Alice"), list("Bob"), list("Evan")]

[['A', 'l', 'i', 'c', 'e'], ['B', 'o', 'b'],

 ['E', 'v', 'a', 'n']]

55

www.umbc.edu

Practice: Two-Dimensional Lists

1. Using a loop, print all five numbers from the
first row of ex_nums

2. Replace the 4 with
the word “four”

3. Add a 3 to the end of
the last row

4. Delete the 5 from
the list

56

0 1 2 3 4

0 1 2 3 4 5

1 6 7 8

2 9 0 1 2

ex_nums

www.umbc.edu

Answers: Two-Dimensional Lists
1. for num in ex_nums[0]:

 print(num)

2. ex_nums[0][3] = "four"

3. ex_nums[2].append(3)

4. ex_nums[0].remove(5)

57

0 1 2 3 4

0 1 2 3 4 5

1 6 7 8

2 9 0 1 2

ex_nums

www.umbc.edu

Practice: List of Lists of Characters

1. Add a “b” and a “y” to the end of “Bob”

2. Print out the second letter in “Evan”

3. Change “Alice” to “Alyce”

58

0 1 2 3 4

0 A l i c e

1 B o b

2 E v a n

names[1].append('b')

names[1].append('y')

print(names[2][1])

names[0][2] = 'y'

names

www.umbc.edu

Announcements

• Lab 3 is being held this week!

– Make sure you attend your correct section

• Homework 4 is out

– Due by Monday (February 29th) at 8:59:59 PM

• Homeworks and Pre-Labs are on Blackboard

– Homework 1 grades have been released

59

www.umbc.edu

Practice Problems

• Write a program that allows the user to try
and guess the password. It should allow them
to guess the password up to three times
before it doesn’t let them guess anymore.

• Write a program that allows the user to enter
numbers until they enter a -1 to stop.

– After they enter a -1, it should output the average,
the minimum, and the maximum of the numbers.
Make sure not to include the -1 when calculating!

60

